Inositol phosphoceramide synthase is a regulator of intracellular levels of diacylglycerol and ceramide during the G1 to S transition in Saccharomyces cerevisiae.

نویسندگان

  • Jorge Cerbón
  • Alejandro Falcon
  • Carlos Hernández-Luna
  • David Segura-Cobos
چکیده

We recently reported that DAG (diacylglycerol) generated during sphingomyelin synthesis plays an important role in protein kinase C activation and cell proliferation in Madin-Darby canine kidney cells [Cerbon and Lopez-Sanchez (2003) Biochem. J. 373, 917-924]. In yeast cells, IPC (inositol phosphoceramide) synthase catalyses the transfer of phosphoinositol from phosphatidylinositol to ceramide to form IPC and generates DAG. In the present study, we found that, during the G1 to S transition after N2-starvation, there was a significant increase in the synthesis of IPC accompanied by a progressive increase (up to 6-fold) in the level of DAG. The increased DAG levels coincided with decrements in ceramide and sphingoid base levels, conditions that are adequate for the activation of putative protein kinase C required for the G1 to S transition and proliferation of yeast cells. To separate the role of DAG generated during IPC synthesis from that originating from other sources, we utilized beta-chloroalanine and myriocin, inhibitors of serine:palmitoyl-CoA transferase, the first committed step in sphingolipid synthesis, to avoid accumulation of sphingolipid intermediates. When the synthesis of sphingolipids was inhibited, DAG accumulation was significantly decreased and the G1 to S transition was blocked; such blockage was avoided by metabolic complementation with phytosphingosine. The DAG/ceramide ratio was 0.27 and it changed to 2.0 during growth re-initiation, suggesting that the synthesis of phosphosphingolipids could act to switch growth arrest (increased ceramide) to a mitogenic signal (increased DAG), and that this signalling process is preserved in yeast and mammalian cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structures of the glycosylphosphatidylinositol membrane anchors from Aspergillus fumigatus membrane proteins.

Glycosylphosphatidylinositol (GPI)-anchored proteins have been identified in all eukaryotes. In fungi, structural and biosynthetic studies of GPIs have been restricted to the yeast Saccharomyces cerevisiae. In this article, four GPI-anchored proteins were purified from a membrane preparation of the human filamentous fungal pathogen Aspergillus fumigatus. Using new methodology applied to western...

متن کامل

Diacylglycerol pyrophosphate phosphatase in Saccharomyces cerevisiae.

Diacylglycerol pyrophosphate (DGPP) phosphatase in the yeast Saccharomyces cerevisiae is a Mg(2+)-independent and N-ethylmaleimide-insensitive 34-kDa vacuolar membrane-associated enzyme. It catalyzes the dephosphorylation of DGPP to form phosphatidate (PA) and then removes the phosphate from PA to form diacylglycerol (DAG). The enzyme is a member of the lipid phosphate phosphatase superfamily t...

متن کامل

Depletion of acyl-coenzyme A-binding protein affects sphingolipid synthesis and causes vesicle accumulation and membrane defects in Saccharomyces cerevisiae.

Deletion of the yeast gene ACB1 encoding Acb1p, the yeast homologue of the acyl-CoA-binding protein (ACBP), resulted in a slower growing phenotype that adapted into a faster growing phenotype with a frequency >1:10(5). A conditional knockout strain (Y700pGAL1-ACB1) with the ACB1 gene under control of the GAL1 promoter exhibited an altered acyl-CoA profile with a threefold increase in the relati...

متن کامل

Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion.

The synthesis of phospholipids in the yeast Saccharomyces cerevisiae is regulated by zinc, an essential mineral required for growth and metabolism. Cells depleted of zinc contain increased levels of phosphatidylinositol and decreased levels of phosphatidylethanolamine. In addition to the major phospholipids, the levels of the minor phospholipids phosphatidate and diacylglycerol pyrophosphate de...

متن کامل

CWH43 is required for the introduction of ceramides into GPI anchors in Saccharomyces cerevisiae.

After glycosylphosphatidylinositols (GPIs) are added to GPI proteins of Saccharomyces cerevisiae, the fatty acid in sn-2 of the diacylglycerol moiety can be replaced by a C26:0 fatty acid by a deacylation-reacylation cycle catalysed by Per1p and Gup1p. Furthermore the diacylglycerol moiety of the yeast GPI anchor can also be replaced by ceramides. CWH43 of yeast is homologous to PGAP2, a gene t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 388 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005